
TCP4W API User Manual

License

TCP4W was written by Philippe Jounin and is Copyrighted 1994 by him. The author disclaims all
liability for its use or for problems, data corruption, data loss, or other loss that may result from its
use.
Permission is given without restriction to use and distribute the program provided that it is
distributed without charge, that it is not modified in any way, and that this file accompanies the
DLL file.
This program may be included on CD-ROMs or other distribution methods freely, provided any
charge for such is for recovering the cost of distribution and reasonable profit and not for the
purpose of "selling" the program. In this case the distribution must contain the complete
program including this file.

Send any comments to ark@ifh.sncf.fr.

The samples provided are written and copyrighted by Andreas Tikart. Please, send your
comments or questions about them at Andreas.Tikart@uni-konstanz.de.

Overview

TCP4W.DLL provides APIs which allow an easy use of the TCP protocol in connected mode.
Some features are related to the Telnet protocol .
It is a Windows Dynamic Library (DLL), which can be used by any language (and any compiler). It
requires a Windows Sockets DLL (Winsock.DLL).

All functions provided return only when the associated operation is finished or if a timeout has
occurred.
While a process is waiting for a blocking call, it continues to receive messages (Timer, user's
actions), and it can call again a network related function, this second call will failed in order to
avoid reentrance. To cancel a blocking call, the application should call TcpAbort (or
WSACancelBlockingCall which marks the first call as cancelled (but do not cancel it immediatly),
then return control to Windows before calling any other network related function (see example in
the description of the TcpAbort call).

Programming with the TCP4W API

To use the TCP4W functions 8 files are provided:

- This reference
- The DLL TCP4W.DLL
- The 32 bits version TCP4W32.DLL
- A C-header file TCP4W.H
- A Pascal-header file USETCP4W.PAS written by Andreas Tikart.
- A library file TCP4W.LIB
- A static library TCP4WLIB.LIB
- The 32 bits static library TCP4W32L.LIB

The first function that an application should call is Tcp4wInit. It allocates buffers and get some
information about the task which has called it.

The task is ready to open connections. It must either call TcpConnect (client) or wait for
a connection with both TcpGetListenSocket and TcpAccept.

Now it can send or receive data with TcpRecv, TcpSend. If the remote peer uses a telnet based
protocol, the function should uses TnSend, TnReadLine or TnGetAnswerCode.

Before quitting, the application must close opened sockets with TcpClose, and call
Tcp4wCleanup.

The TCP4W functions

This table lists alphabetically all the functions implemented in this version. The remainder
of this chapter describes them one by one.

Tcp4wCleanup Last function to be called, frees local resources
Tcp4wInit First function to be called
Tcp4wVer Gives the 2-part version of the DLL (packed into an int).

TcpAbort Aborts the current blocking call
TcpAccept Wait for a connection
TcpClose Close a socket
TcpConnect Establishes a connection to a peer
TcpFlush Flushes the buffer associated with a socket
TcpGetListenSocket Create a socket and listen for incoming connection
TcpGetLocalID Returns name and address of the local host
TcpGetRemoteID Returns name and address of the connected host
TcpIsDataAvail Returns TRUE if unread data are available
TcpIsOOBDataAvail Returns TRUE if unread Out of Band data are available
TcpPPRecv Receives data with length of frame in the two first bytes
TcpPPSend Sends data, the two first bytes of the frame are its length
TcpRecv Receives data
TcpRecvUntilStr Receives data until a given character/string
TcpSend Sends data to connected host

TnGetAnswerCode Receives data until end of a Telnet frame
TnReadLine Receives data until a end of line
TnSend Sends a 0-terminated string

Tcp4wCleanup

This function closes opened sockets, frees internal buffers. This function fails only if a blocking
call is in progress. In this case, it cancels the blocking call, thus the next Tcp4wCleanup
succeeds.

If Tcp4wInit has not been called, Tcp4wCleanup returns IP_SUCCESS.

The sample below shows a "simple" way to close a application.

Syntax: Tcp4wCleanup ()

Return: IP_ERROR A Blocking call is in progress
IP_SUCCESS Cleanup done

Example :

case WM_TIMER :
KillTimer (hWnd, wParam);
PostMessage (hWnd, wParam, 0, 0l);
break;

case WM_CLOSE :
 if (Tcp4wCleanup ()==IP_ERROR)
 { SetTimer (hWnd, WM_CLOSE, 500l, 0);

 return FALSE; }
else

 { DestroyWindow (hWnd);
 PostQuitMessage (); }
break;

Tcp4wInit

This function initializes the internal structures of Tcp4w and calls WSAStartup which initializes the
module Winsock.Dll.

It must be called by each task which want to use Tcp4w services.

Syntax: Tcp4wInit ()

Return: IP_ERROR Tcp4w has not found a correct Winsock.Dll.
IP_SUCCESS Task is registered.

Example :

 case WM_CREATE :
 if (Tcp4wInit () != IP_SUCCESS)
 {

 MessageBox (hWnd, "Init Error", "Sample App", MB_OK);
 PostMessage (hWnd, WM_CLOSE, 0, 0l);

 }

Tcp4wVer

Tcp4w returns the version number of the DLL, as an integer. The low order byte is the release
number, the high order byte is the major version number.

The function copies in the user's buffer a string which contains information on the DLL (name,
version, author, copyright). This string is guaranteed not to exceed 100 characters.

Syntax: Tcp4wVer(LPSTR szVerStr, int nStrSize)
(LPSTR is a 32-bits pointer)

Arguments: szVerStr: a buffer which is to receive the version information
nStrSize: its size

Return: an integer which contains the version.

Example:

 char szStr[100];
Tcp4wVer (szStr, sizeof szStr);
MessageBox (NULL, szStr, "Ftp4w Test", MB_OK);

TcpAbort

This function cancels a Winsocket blocking operation for this task.

As said above, while a process is waiting for a blocking call to be completed, it continues to
receive messages (Timer, user's actions). This blocking operation must be cancelled before any
other network related functions can be called.

When TcpAbort returns, the blocking call is cancelled, but has not returned the control to the
application. Thus the following code does not free the socket:

case WM_CLOSE :
TcpAbort ();
TcpClose (& Socket);
PostQuitMessage(0);

The TcpClose call will fails if a blocking call is in progress. TcpAbort has marked it as cancelled,
but a pause is necessary.

Syntax: TcpAbort ()

Return: IP_SUCCESS OK

Example:

This example shows one of the safest ways to close an application.

case WM_TIMER :
 KillTimer (hWnd, wParam);
 PostMessage (hWnd, wParam, 0, 0l);
 break;

case WM_CLOSE :
 TcpAbort ();
 SetTimer (hWnd, WM_USER, 100, NULL);
 break;

case WM_USER :
 TcpClose (& Socket);
 Tcp4wCleanup ();
 DestroyWindow (hWnd);
 PostQuitMessage(0);
 break;

TcpAccept

This function waits for a connection and establishes it. The functions blocks until a client tries to
establish a connection with the host.

This function must be called after a successful TcpGetListenSocket.

Syntax: TcpAccept (SOCKET FAR *pConnSock, SOCKET ListenSock, UINT TimeOut)
 (SOCKET is an unsigned 16-bit integer)

Arguments: pConnSock A 32-bit pointer on a socket descriptor. TcpAccept fills it
with a value which identifies the connection.

ListenSock A socket descriptor given by the FtpGetListenSock
TimeOut the value of the timeout in second. 0 means that the

function will block until a connection is requested.

Returns IP_BUFFERFREED The function can not write into pConnSock
IP_CANCELLED The call has been cancelled by TcpAbort or

Tcp4wCleanup
IP_ERROR An unexpected error has occurred or a blocking call is

in progress
IP_TIMEOUT A timeout occurred
IP_SUCCESS A connection has been requested and its descriptor

 is available in the pConnSocket descriptor

TcpClose

This function closes a socket created with TcpAccept, TcpGetListenSocket or TcpConnect.

Syntax: TcpClose (SOCKET FAR *pSock)

Arguments: pSock A 32-bit pointer on a socket descriptor. TcpClose fills it
to INVALID_SOCKET.

Returns IP_BUFFERFREED The function can not write into pSock
IP_ERROR An unexpected error has occurred or a blocking call is

in progress
IP_SUCCESS the Socket has been successfully closed

TcpConnect

This function tries to establish a connection with a remote peer.

Syntax: TcpConnect (SOCKET far *pS, LPSTR szHost, LPSTR szService, short far *lpPort)

Arguments: pS A 32-bit pointer on a socket descriptor. It is filled by
TcpConnect

szHost The name or the IP-Address of the server to be reached
szService The name of the TCP service which is to be used (NULL

if any)
lpPort A 32-bit pointer on a 16-bit integer. This integer contains

the value of the Port which is to be used. If the argument
szService is not NULL, TcpConnect tries to locate the port
in the file service, if it fails the value contained into lpPort
is used, if it succeeds TcpConnect fills the value to the
port returned.

Return: IP_BUFFERFREED The function can not write into pS
IP_CONNECTFAILED The server can not be reached or no process are

listening on the port.
IP_ERROR An unexpected error has occurred or a blocking call is

in progress
IP_HOSTUNKNOWN The host has not been found in the file hosts, or the

dotted address is not valid (ie: "10.10.10.543")
IP_NOMORESOCKET All sockets have been used.
IP_SUCCESS The connection has been established and its descriptor

 is available in the pS descriptor

Example:

This sample app will try to establish a connection with the FTP server oak.oakland.edu. It waits
for its answer, then closes the connection and terminates.

#include <windows.h>
#include <tcp4w.h>

static char szHost[] = "oak.oakland.edu";

int PASCAL WinMain (HANDLE hInstance, HANDLE hPrevInstance,
 LPSTR lpszCmdLine, int nCmdShow)
{
char szStr [256];
char szReply [100];
SOCKET CSock;
int Rc;
short nPort=0;

 if (Tcp4wInit () != IP_SUCCESS) return 0;
 Rc = TcpConnect (& CSock, szHost, "ftp", & nPort);
 if (Rc==IP_SUCCESS)
 {
 TcpRecv (CSock, szReply, sizeof szReply-1, 60, HFILE_ERROR);

 TcpClose (& CSock);
 wsprintf (szStr,
 "Connection successful on port %d\nserver said:\n\n%s",
 nPort, (LPSTR) szReply);
 }
 else
 wsprintf (szStr, "Connection failed\nerror %d", Rc);
 MessageBox (NULL, szStr, "Test Tcp4w", MB_OK);
 Tcp4wCleanup ();
return 0;
} /* WinMain */

TcpFlush

This function empties the reception buffer of a given socket.

Syntax: TcpFlush (SOCKET S)

Arguments: S A Socket returned by TcpConnect or TcpAccept.

Return: IP_CANCELLED Operation has been cancelled with TcpAbort or
Tcp4wCleanup

IP_ERROR An unexpected error has occurred or a blocking call is
in progress

IP_SOCKETCLOSED The remote peer has closed its connection. No more
data are to be received.

IP_SUCCESS Reception buffer is now empty.

TcpGetListenSocket

This function prepares the application for accepting connection on a given port.

Syntax: TcpGetListenSocket (SOCKET far *pS, LPSTR szService, short far *lpPort,
int nPendingConnection)

Arguments: pS A 32-bit pointer on a socket descriptor. It is filled with a value which
is to be passed to TcpAccept in order to establish connection.

szService A string pointer on the service used by the application. if the pointer
is NULL or the service has not been found, the value given into
lpPort is used.

lpPort A 32-bit pointer on a value which should contain the port on which
the application should await connections. If szService is a valid
service name, lpPort will contain the port corresponding to this
service.

nPendingConnection The maximum length to which the queue of pending
connection may grow. Illegal values (less than 1 or greater than 5)
are replace by the nearest legal value.

Return: IP_BUFFERFREED The pS pointer is not usable.
IP_CANCELLED Operation has been cancelled with TcpAbort or

Tcp4wCleanup
IP_ERROR An unexpected error has occurred or a blocking call is

in progress
IP_NOMORESOCKET All sockets have been taken.
IP_SUCCESS The application is now listening for incoming connections

TcpAccept must be called to establish them.

Example:

This sample application is an FTP server which accepts any incoming connection then rejects the
client by sending a reject string and dies. Since this sample does not have a window, it must be
tested by an FTP client as shown above.

#include <windows.h>
#include <tcp4w.h>

static char szRejectStr[] = "421 No command implemented\r\n";

int PASCAL WinMain (HANDLE hInstance, HANDLE hPrevInstance,
 LPSTR lpszCmdLine, int nCmdShow)
{
SOCKET ListenSock, ConnSock;
int Rc;
short nPort=0;
 if (Tcp4wInit () != IP_SUCCESS) return 0;
 Rc = TcpGetListenSocket (& ListenSock, "ftp", & nPort, 1);
 if (Rc==IP_SUCCESS)
 {
 Rc = TcpAccept (& ConnSock, ListenSock, 600);
 if (Rc==IP_SUCCESS)
 {
 TcpSend (ConnSock, szRejectStr, sizeof szRejectStr-1,

 FALSE, HFILE_ERROR);
 TcpClose (& ConnSock);

 }
 TcpClose (& ListenSock);
 }
 Tcp4wCleanup ();
return 0;
} /* WinMain */

TcpGetLocalID

This function identifies the local station.

Syntax: TcpGetLocalID (LPSTR szStrName, int uNameSize, DWORD far *lpAddress)

Arguments: szStrName A 32-bit pointer on a string which is to be filled with the name of the
station. If the pointer is NULL, the name of the station is not
returned.

uNameSize The size of the buffer szStrName.
lpAddress A 32-bit pointer on a double word which is to be filled with the IP

address of the station. If this pointer is NULL, the IP-Address is
not returned.

Returns: IP_ERROR The IP-stack was unable to get the name of the local
station.

IP_OVERFLOW The name is longer than the given buffer.
IP_SUCCESS The requested data are available.

Example:

char StationName[64];
DWORD IPAddress;
unsigned char *cAdd = (char *) &IPAddress;

 TcpGetLocalID(StationName, sizeof StationName, & IPAddress);
 wsprintf (szBuf, "Local Station is %s, Address %u.%u.%u.%u",
 StationName, cAdd[0], cAdd[1], cAdd[2], cAdd[3]);

TcpGetRemoteID

This function identifies the peer station.

Syntax: TcpGetRemoteID (SOCKET s, LPSTR szStrName, int uNameSize,
 DWORD far *lpAddress)

Arguments: S The socket by which the peer station is connected.
szStrName A 32-bit pointer on a string which is to be filled with the name of the

station. If the pointer is NULL, the name of the station is not
returned.

uNameSize The size of the buffer szStrName.
lpAddress A 32-bit pointer on a double word which is to be filled with the IP

address of the station. If this pointer is NULL, the IP-Address is
not returned.

Returns: IP_ERROR The IP-stack was unable to get the name of the remote
station. The socket descriptor does not identify a
connection.

IP_OVERFLOW The name is longer than the given buffer.
IP_SUCCESS The requested data are available.

Example:

char StationName[64];
DWORD IPAddress;
unsigned char *cAdd = (char *) &IPAddress;

 TcpGetRemoteID (Skt, StationName, sizeof StationName, &IPAddress);
 wsprintf (szBuf, "Local Station is %s, Address %u.%u.%u.%u",
 StationName, cAdd[0], cAdd[1], cAdd[2], cAdd[3]);

TcpPPRecv

This function receives a frame with a timeout. The first 16-bit of this frame contains its length in
network order. They are NOT passed into the user's buffer.

Syntax: TcpPPRecv (SOCKET s, LPSTR szBuf, unsigned uBufSize,
 unsigned uTimeOut, BOOL bExact, HFILE hLogFile)

Arguments: s The descriptor of the connection returned by TcpConnect or
TcpAccept

szBuf The user's buffer
uBufSize Its size in bytes
uTimeOut The timeout in second
bExact Specify if the TcpPPRecv function should receive exactly uBufSize

bytes.
hLogFile A file (returned by _lopen, _lcreat) in which the data are written.

To disable this feature, this argument should be HFILE_ERROR

Returns: IP_BUFFERFREED The user's buffer has been released.
IP_CANCELLED The request has been cancelled by TcpAbort or

Tcp4wCleanup
IP_EMPTYBUFFFER The frame is empty. (Its length is 0 byte)
IP_ERROR An unexpected error has occurred or a blocking call is

already in progress
IP_INSMEMORY Tcp4w can not allocate its temporary buffers
IP_OVERFLOW The frame to be received is greater than the user's buffer
IP_SOCKETCLOSED The remote host has closed its connection.
IP_UNMATCHEDLENGTH The parameter bExact is set to TRUE and the

expected length differs from the received one.
>0 The length in bytes of the received frame. The frame is

copied into the user's buffer except the first two bytes.

Example:

char szBuf[64];

 Rc = TcpPPRecv (Skt, szBuf, sizeof szBuf, 60, FALSE, HFILE_ERROR);
 wsprintf (szStr,"%d bytes have been received\nBuffer %s",Rc,szBuf);
 MessageBox (hWnd, szStr, "Test Tcp4w", MB_OK);

TcpPPSend

This function sends a two-bytes frame which are the size of the data to be sent, then the data are
sent.

Syntax: TcpPPSend (SOCKET s, LPSTR szBuf, unsigned uBufSize, HFILE hLogFile)

Arguments: s The descriptor of the connection returned by TcpConnect or
TcpAccept

szBuf The user's buffer
uBufSize Its size in bytes
hLogFile A file (returned by _lopen, _lcreat) in which the data are written.

To disable this feature, this argument should be HFILE_ERROR

Returns: IP_CANCELLED The request has been cancelled by TcpAbort or
Tcp4wCleanup

IP_ERROR An unexpected error has occurred or a blocking call is
already in progress

IP_INSMEMORY Tcp4w can not allocate its temporary buffers
IP_SUCCESS The data have been sent.

Example:

char szBuf[] = "Bonjour";
 Rc = TcpPPSend (Skt, szBuf, lstrlen(szBuf), HFILE_ERROR);

TcpRecv

This function receives data sent by the remote station.

Syntax: TcpRecv (SOCKET s, LPSTR szBuf, unsigned uBufSize,
 unsigned uTimeOut, HFILE hLogFile)

Arguments: s The descriptor of the connection returned by TcpConnect or
TcpAccept

szBuf The user's buffer
uBufSize Its size in bytes
uTimeOut The timeout in second
hLogFile A file (returned by _lopen, _lcreat) in which the data are written.

To disable this feature, this argument should be HFILE_ERROR

Returns: IP_BUFFERFREED The user's buffer has been released.
IP_CANCELLED The request has been cancelled by TcpAbort or

Tcp4wCleanup
IP_EMPTYBUFFFER The frame is empty. (Its length is 0 byte)
IP_ERROR An unexpected error has occurred or a blocking call is

already in progress
IP_INSMEMORY Tcp4w can not allocate its temporary buffers
IP_OVERFLOW The frame to be received is greater than the user's buffer
IP_SOCKETCLOSED The remote host has closed its connection.
>0 The length in bytes of the received frame. The frame is

copied into the user's buffer except the first two bytes.

Example:

char szBuf[64];

 Rc = TcpRecv (Skt, szBuf, sizeof szBuf, 60, HFILE_ERROR);
 wsprintf (szStr,"%d bytes have been received\nBuffer %s",Rc,szBuf);
 MessageBox (hWnd, szStr, "Test Tcp4w", MB_OK);

TcpRecvUntilStr

This function receives data sent by the remote station until a particular string has been received.
Note: This function should not be used with the Novell stack LAN Workplace.

Syntax: TcpRecvUntilStr (SOCKET s, LPSTR szBuf,unsigned far *lpBufSize,
 LPSTR szStop, unsigned uStopSize, BOOL bCaseSensitive,

 unsigned uTimeOut, HFILE hLogFile);

Arguments: s The descriptor of the connection returned by TcpConnect or
TcpAccept

szBuf The user's buffer
lpBufSize A 32-bit pointer on a word which must be initialized with the size

of the user's buffer. In return, this word will contain the length of the
received frame.

szStop The string which ends the reception
uStopSize The length of this string
bCaseSensitive set to TRUE if the end-string is case sensitive.
uTimeOut The timeout in second
hLogFile A file (returned by _lopen, _lcreat) in which the data are written.

To disable this feature, this argument should be HFILE_ERROR

Returns: IP_BUFFERFREED The user's buffer has been released.
IP_CANCELLED The request has been cancelled by TcpAbort or

Tcp4wCleanup
IP_ERROR An unexpected error has occurred or a blocking call is

already in progress
IP_INSMEMORY Tcp4w can not allocate its temporary buffers
IP_OVERFLOW The user's buffer has been filled and the searched string

has not been received.
IP_SOCKETCLOSED The remote host has closed its connection.
IP_SUCCESS The string has been received (but has not been copied

into the user's buffer).

Example:

char szBuf[64];
char szEndStr[] = "#END#";
UINT nLength = sizeof szBuf;

 Rc = TcpRecvUntilStr (Skt, szBuf, & nLength,
 szEndStr, sizeof szEndStr,
 60, HFILE_ERROR);

 wsprintf (szStr,"%d bytes have been received\nBuffer %s",
 nLength, szBuf);

 MessageBox (hWnd, szStr, "Test Tcp4w", MB_OK);

TcpSend

This function sends the given data.

Syntax: TcpSend (SOCKET s, LPSTR szBuf, unsigned uBufSize, BOOL bHighPriority,
 HFILE hLogFile)

Arguments: s The descriptor of the connection returned by TcpConnect or
TcpAccept

szBuf The user's buffer
uBufSize Its size in bytes
bHighPriority set to TRUE if the date are to be sent in Out Of Band mode.
hLogFile A file (returned by _lopen, _lcreat) in which the data are written.

To disable this feature, this argument should be HFILE_ERROR

Returns: IP_CANCELLED The request has been cancelled by TcpAbort or
Tcp4wCleanup

IP_ERROR An unexpected error has occurred or a blocking call is
already in progress

IP_INSMEMORY Tcp4w can not allocate its temporary buffers
IP_SUCCESS The data have been sent.

Example:

char szBuf[] = "Bonjour";
 Rc = TcpSend (Skt, szBuf, lstrlen(szBuf)+1, FALSE, HFILE_ERROR);

TnGetAnswerCode

This function receives a complete telnet string. Valid strings are described by the RFC 764. For
instance, here are two valid strings:

220 Hello
or

220-
220- Welcome to our FTP server
220-
220

The function returns either a telnet code (the 3 digits at the beginning of the string) or an error
code.

Syntax: TnGetAnswerCode (SOCKET skt, LPSTR szBuf, UINT uBufSize,
UINT uTimeOut, HFILE hf);

Arguments: skt The descriptor of the connection returned by TcpConnect or
TcpAccept

szBuf The user's buffer into which the string will be copied
uBufSize Its size
uTimeOut The timeout
hf A file handler into which the data will be copied

Returns: TN_ERROR An error or a timeout has occurred
100< Rc < 999 Rc is a telnet answer code

TnReadLine

This function receives a string ended by an EOL character (ASCII 10).
A NUL character is added to the returned string.

Syntax: TnReadLine (SOCKET skt, LPSTR szBuf, UINT uBufSize,
UINT uTimeOut, HFILE hf);

Arguments: skt The descriptor of the connection returned by TcpConnect or
TcpAccept

szBuf The user's buffer into which the string will be copied
uBufSize Its size
uTimeOut The timeout
hf A file handler into which the data will be copied

Returns: TN_BUFFERFREED szBuf is not a writeable buffer
TN_ERROR An error has occurred
TN_OVERFLOW uBufSize character have been transferred into the

user's buffer, but the EOL character has not been found
TN_TIMEOUT A timeout has occurred
TN_SOCKETCLOSED Remote host has closed the connection
TN_SUCCESS The string is available into szBuf

TnSend

This function sends a 0-terminated string, then sends the telnet termination string (<CR><LF>).

Syntax: TnSend (SOCKET skt, LPSTR szString, BOOL bHighPriority, HFILE hf);

Arguments: skt The descriptor of the connection returned by TcpConnect or
TcpAccept

szString The string to be sent
bHighPriority TRUE if the string must be sent in Out Of Band mode
hf A file handler into which the data will be written

Returns: TN_ERROR An error has occurred
TN_SUCCESS The string has been successfully sent

